CLASE 8. El Teorema de la Divergencia de Gauss

La generalización del teorema de la divergencia en el plano (Teorema 5.8) al espacio \mathbb{R}^3 se obtiene al considerar el flujo de un campo vectorial a través (hacia afuera, orientación exterior) de una superficie cerrada, la cual encierra a una región (volumen). En condiciones adecuadas el flujo del campo coincidirá con la integral triple de la divergencia.

Teorema 8.1 (Teorema de la Divergencia de Gauss). Sea V una región elemental en el espacio de tipo IV (simétrica) y denotemos por ∂V la superficie cerrada, orientada exteriormente, que acota a V. Si \mathbf{F} es un campo vectorial de clase \mathcal{C}^1 definido en V, entonces

$$\iint\limits_{\partial V} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{V} \operatorname{div}(\mathbf{F}) \, dV.$$

Como caso particular de éste teorema, tenemos:

Teorema 8.2 (Ley de Gauss). Sea V una región elemental en el espacio de tipo IV (simétrica) y denotemos por ∂V la superficie cerrada, orientada con η que apunta hacia afuera, que acota a V. Consideremos el campo vectorial $\mathbf{r}(x,y,z)=(x,y,z)$ (y, por tanto, $\|\mathbf{r}(x,y,z)\|=\sqrt{x^2+y^2+z^2}$). Si el origen no está en ∂V , entonces

$$\iint_{\partial V} \frac{\mathbf{r} \cdot \boldsymbol{\eta}}{\|\mathbf{r}\|^3} \, \mathrm{d}s = \begin{cases} 4\pi & \text{si } (0,0,0) \in V; \\ 0 & \text{si } (0,0,0) \not\in V. \end{cases}$$

Opcional

Para interpretar la divergencia como tasa de expansión de flujo, recurrimos al siguiente teorema:

Teorema 8.3. Sea $B(\mathbf{p},t)$ la región esférica de radio t con centro en el punto $\mathbf{p} \in \mathbb{R}^3$. La esfera (superficie) de radio t y centro \mathbf{p} , denotada por $S(\mathbf{p},t)$, es la frontera de $B(\mathbf{p},t)$ con vector normal unitario $\boldsymbol{\eta}$ exterior. Si V(t) denota el volumen de $B(\mathbf{p},t)$ y \mathbf{F} es un campo vectorial de tipo \mathcal{C}^1 (en la esfera), entonces

$$\operatorname{div}(\mathbf{F})(\mathbf{p}) = \lim_{t \to 0} \frac{1}{V(t)} \iint_{S(\mathbf{p}, t)} \mathbf{F} \cdot \boldsymbol{\eta} \, ds.$$

Es decir, la divergencia de \mathbf{F} en el punto \mathbf{p} es la razón de cambio del flujo (de \mathbf{F}) saliendo de la esfera por unidad de volumen, por unidad de tiempo en el punto. Si se interpreta a \mathbf{F}

como una densidad de masa, entonces la divergencia de \mathbf{F} en \mathbf{p} sería la razón de cambio de la masa por unidad de volumen en la unidad de tiempo en el punto \mathbf{p} .

Prueba. La función escalar $f(x, y, z) = \text{div}(\mathbf{F})$ es continua por ser \mathbf{F} de clase \mathcal{C}^1 , y para cada $\mathbf{x} = (x, y, z) \in B(\mathbf{p}, t)$ podemos escribir $f(\mathbf{x}) = f(\mathbf{p}) + h(\mathbf{x})$, con $\lim_{\mathbf{x} \to \mathbf{p}} h(\mathbf{x}) = 0$. Al aplicar el teorema de la divergencia (Teorema 8.1) se obtiene

$$\begin{split} \frac{1}{V(t)} & \iint\limits_{S(\mathbf{p},t)} \mathbf{F} \cdot \boldsymbol{\eta} \, \mathrm{d}s = \frac{1}{V(t)} \iiint\limits_{B(\mathbf{p},t)} \mathrm{div}(\mathbf{F}) \, \mathrm{d}V \\ & = \frac{1}{V(t)} \iiint\limits_{B(\mathbf{p},t)} f(\mathbf{p}) \, \mathrm{d}V + \frac{1}{V(t)} \iiint\limits_{B(\mathbf{p},t)} h(\mathbf{x}) \, \mathrm{d}V. \end{split}$$

Como $f(\mathbf{p}) = (\text{div } \mathbf{F})(\mathbf{p})$ es constante (respecto a \mathbf{x}) entonces

$$\frac{1}{V(t)} \iint_{S(\mathbf{p},t)} \mathbf{F} \cdot \boldsymbol{\eta} \, ds = f(\mathbf{p}) \frac{1}{V(t)} \iiint_{B(\mathbf{p},t)} dV + \frac{1}{V(t)} \iiint_{B(\mathbf{p},t)} h(\mathbf{x}) \, dV$$

$$= f(\mathbf{p}) + \frac{1}{V(t)} \iiint_{B(\mathbf{p},t)} h(\mathbf{x}) \, dV. \tag{1}$$

Ahora procedemos a probar que $\lim_{t\to 0}\frac{1}{V(t)}\iiint\limits_{B(\mathbf{p},t)}h(\mathbf{x})\,\mathrm{d}V=0$. Como $h(\mathbf{x})\to 0$ cuando

 $\mathbf{x} \to \mathbf{p}$ entonces se cumple $\max_{\|\mathbf{x} - \mathbf{p}\| \le t} \|h(\mathbf{x})\| \to 0$ si $t \to 0$. Luego,

$$\left| \frac{1}{V(t)} \iiint\limits_{B(\mathbf{p},t)} h(\mathbf{x}) \, \mathrm{d}V \right| \leq \max_{\|\mathbf{x}-\mathbf{p}\| \leq t} |h(\mathbf{x})| \frac{1}{V(t)} \iiint\limits_{B(\mathbf{p},t)} \mathrm{d}V \leq \max_{\|\mathbf{x}-\mathbf{p}\| \leq t} \|h(\mathbf{x})\|.$$

Tomando límite es

$$0 \leq \lim_{t \to 0} \left| \frac{1}{V(t)} \iiint\limits_{B(\mathbf{p}, t)} h(\mathbf{x}) \, \mathrm{d}V \right| \leq \lim_{t \to 0} \max_{\|\mathbf{x} - \mathbf{p}\| \leq t} |h(\mathbf{x})| = 0.$$

Así, $\lim_{t\to 0} \frac{1}{V(t)} \iiint_{B(\mathbf{p},t)} h(\mathbf{x}) dV = 0$ y, gracias a la ecuación (1), concluimos que

$$f(\mathbf{p}) = \lim_{t \to 0} \frac{1}{V(t)} \iint_{S(\mathbf{p},t)} \mathbf{F} \cdot \boldsymbol{\eta} \, ds.$$

Ejemplo 8.4. Considere el campo vectorial F dado por

$$\mathbf{F}(x,y,z) = (zx\sqrt{z^2 - y^2}, \, 2yz, \, y\sqrt{x^2 + y^2} - z^2) \text{ y las superficies}$$

$$S_1 = \{(x,y,z) \in \mathbb{R}^3 \ : \ x^2 + y^2 \leq 9, \, z = 3\}$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, 1 \le z \le 3\}$$

$$S_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 1\}.$$

Sea $S = S_1 \cup S_2 \cup S_3$ con la orientación de los vectores normales exteriores. Calcule $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

Solución. Se cumplen las condiciones del Teorema de la Divergencia (Teorema 8.1). Calculos directos arrojan que div $(\mathbf{F})=z\sqrt{z^2-y^2}$.

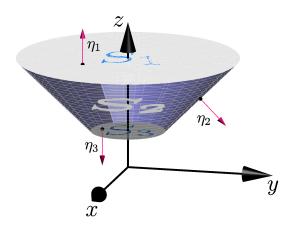


Figura 1: La superficie cerrada $S = S_1 \cup S_2 \cup S_3$, orientada exteriormente.

Así
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} \operatorname{div}(\mathbf{F}) \, dV$$
. Ahora,

$$\iiint_{V} \operatorname{div}(\mathbf{F}) \, dV = \int_{1}^{3} \int_{-z}^{z} \int_{-\sqrt{z^{2}-y^{2}}}^{\sqrt{z^{2}-y^{2}}} z \sqrt{z^{2}-y^{2}} \, dx \, dy \, dz$$

$$= 2 \int_{1}^{3} \int_{-z}^{z} z (z^{2}-y^{2}) \, dy \, dz = \frac{8}{3} \int_{1}^{3} z^{4} \, dz$$

$$= \frac{8}{3} \frac{z^{5}}{5} \Big|_{1}^{3} = \frac{8}{15} \left(3^{5}-1\right) \left(=\frac{1936}{15}\right).$$

Ejemplo 8.5. Consideremos el cilindro de ecuación $x^2 + y^2 = 2y$. Este cilindro corta al cono $z = \sqrt{x^2 + y^2}$, determinando (en el cono) una superficie acotada S_1 . La superficie "lateral" del cilindro, comprendida entre el cono y el plano z=0, se denota por S_2 y sea $S = S_1 \cup S_2$ con la orientación "exterior". Si \mathbf{F} es el campo vectorial definido por $\mathbf{F}(x,y,z) = (2x,x,z+1)$, calcule $\iint_S \mathbf{F} \cdot d\mathbf{S} = \operatorname{Flujo}(S)$.

Solución. Como S no es una superficie cerrada, no podemos aplicar directamente el Teorema de la Divergencia de Gauss. Sin embargo, si definimos S_3 como la tapa inferior dada por $z=0, x^2+y^2\leq 2y$ entonces la superficie $S\cup S_3$ sí acota (encierra) una región (un sólido) V. Orientamos a $S\cup S_3$ exteriormente. El campo $\mathbf F$ es suave y aplicando el teorema de la divergencia es

$$\iiint\limits_V \operatorname{div}(\mathbf{F}) \, \mathrm{d}V = \iint\limits_{S \cup S_3} \mathbf{F} \cdot \mathrm{d}\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} + \iint\limits_{S_3} \mathbf{F} \cdot \mathrm{d}\mathbf{S}.$$

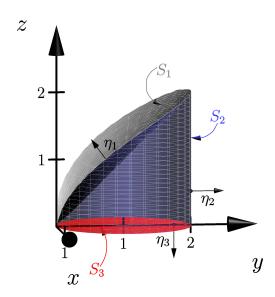


Figura 2: Cerrando la superficie para poder aplicar el Teorema de la Divergencia.

De aquí es $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_V \operatorname{div}(\mathbf{F}) \, dV - \iint_{S_3} \mathbf{F} \cdot d\mathbf{S}$. Calcularemos ahora, por separado, la integral de volumen de la divergencia y el flujo en S_3 (la tapa inferior). Sobre S_3 será z=0

¹Formalmente, el término "orientación exterior" no tiene sentido aquí puesto que la superficie no es cerrada. Sin embargo, en este ejemplo particular, *todo el mundo* entiende igual lo que se quiere decir con dicha frase. En cualquier caso, puede corroborar si entendió bien examinando la Figura 2.

f(x,y), con Dom $f=\mathcal{D}=\{(x,y)\in\mathbb{R}^2: x^2+(y-1)^2\leq 1\}$. La parametrización usual es $\phi(x,y)=(x,y,f(x,y))=(x,y,0)$ (con dominio \mathcal{D}), $\mathbf{T}_x\times\mathbf{T}_y=(-f_x,-f_y,1)=(0,0,1)$. La orientación exterior η_3 está dada $\eta_3=(0,0,-1)$. Luego ϕ invierte la orientación y, en consecuencia,

$$\begin{split} \text{Flujo}(\mathcal{S}_3) &= \iint\limits_{\mathcal{S}_3} \mathbf{F} \cdot d\mathbf{S} = -\iint\limits_{\mathcal{D}} (2x,x,1) \cdot (0,0,1) \, dx \, dy \\ &= -\iint\limits_{\mathcal{D}} dA = -\operatorname{Area}(\mathcal{D}) = -\pi. \end{split}$$

En cuanto a la integral triple, tenemos

$$\iiint\limits_V \operatorname{div}(\mathbf{F}) \, \mathrm{d}V = 3 \iint\limits_{\mathcal{D}} \int\limits_0^{\sqrt{x^2 + y^2}} \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y = 3 \iint\limits_{\mathcal{D}} \sqrt{x^2 + y^2} \, \mathrm{d}x \, \mathrm{d}y.$$

Usando coordenadas polares $x = r\cos(t)$, $y = r\sin(t)$, y sustituyendo en $x^2 + y^2 = 2y$ es $t^2 = 2r\sin(t)$, de donde t = 0 o $t = 2\sin(t)$. Además, $0 \le t \le \pi$, con lo cual

$$\iiint_{V} \operatorname{div}(\mathbf{F}) \, dV = 3 \iint_{\mathcal{D}} \sqrt{x^{2} + y^{2}} \, dx \, dy$$

$$= 3 \int_{0}^{\pi} \int_{0}^{2 \operatorname{sen}(t)} r^{2} \, dr \, dt = \frac{8}{3} \cdot 3 \int_{0}^{\pi} \operatorname{sen}^{3}(t) \, dt$$

$$= 8 \int_{0}^{\pi} \operatorname{sen}^{2}(t) \operatorname{sen}(t) \, dt = 8 \int_{0}^{\pi} (1 - \cos^{2}(t)) \operatorname{sen}(t) \, dt = \frac{32}{3}.$$

Sustituyendo,

$$\iint\limits_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{\mathcal{V}} \text{div}(\mathbf{F}) \, d\mathcal{V} - \iint\limits_{\mathcal{S}_3} \mathbf{F} \cdot d\mathbf{S} = \frac{32}{3} - (-\pi) = \frac{32}{3} + \pi.$$